Find the partial derivative of this function with respect to c.

mathematics

Description

1. Consider the utility function u(c, l) = c 1−γ−1 1−γ + l.

(a) Find the partial derivative of this function with respect to c. 

(b) Find the limit of this function as γ → 1.


2. Consider a firm aiming to maximising total profits from time 0 through infinity. The firm’s production function is f(kt) where kt is the capital stock at time t. New investment is it , and costs wt .

max X∞ t=0  1 1 + r t [f(kt) − wtit ] s.t. kt+1 = (1 − δ)kt + it .

Solve for the condition that determines the firm’s optimal investment decision given kt . 



Related Questions in mathematics category