The flight of a rocket can be modelled mathematically using a 2nd order differential equation involving position, and its time derivatives, velocity and acceleration.

computer science

Description

Background 

The flight of a rocket can be modelled mathematically using a 2nd order differential equation involving position, and its time derivatives, velocity and acceleration. One  approach  to  solving  higher  order  differential  equations  numerically  is  to  split  the  equation  into a  number  of  1st order  differential  equations  which  can  be  solved  by  approximating  gradients.  (If you want to read more, look up Euler’s forward method in any good applied mathematics textbook.) 

 

In  one  dimension,  assume  at  time k we  know  values  the  instantaneous  acceleration ak,  velocity vk, and position xk of the rocket. Using “forward differencing” involving the velocity vk+1of the rocket at timestep k+ 1 a small time ∆t later, the acceleration can be written as

 

so that

 

Similarly, using velocity and position

 

Hence, provided you know the position and velocity of the rocket at any time step k, and you have an independent way of working out the acceleration at that time step, these equations form a scheme to compute position and velocity at the next time step k+ 1, and so on over all time

 

Saturn V:

 

 

Value

 

Initial Mass

2900 (metric tons)

Total Thrust at Launch

3400kN

Stage 1 Burn Time

150sec

Stage 1 Propellant Mass

2150000 kG

Max Diameter

10 m

Length

110m (360 feet)

Stages

3

 

 

 

 

For this exercise we will focus on the first stage.

Exercise

 

Note: Some data input to this program and some program output depends on <your name>. If you do not use your name as required, points will be deducted for this assignment.

 

The <your name> Vertical Rocket Launch Simulation Program should be included in a welcome message at the beginning of the program.  

 

Write a program that performs rocket launch simulation – for this exercise we will focus on the first stage booster, but total propellant will be used in the calculations.  The program should prompt for the rocket’s thrust, mass, and burn time and then use a repetition structure to generation the detail report, followed by a summary report.

 

1.       Declare variables and Named constants.

2.       Display “Welcome to <your name>’s  Vertical Rocket Launch Simulator”

3.       Prompt for the rocket mass

4.       Prompt for the Rocket Thrust

5.       Prompt for the Burn time

6.       Display major heading

7.       Display Column headings

8.       Use pretest for loop or while loop – hint use a control variable “t” for time in seconds.

9.       Calculate gravity

a.       g= (6.673e-11*5.98e24)/ Math.pow((radius + h),2);

10.   Calculate Thrust (t represents the control variable t for time

a.       if (t>=0 && t<burnTime) force=thrust else force=0

11.   Calculate mass (note mass decreases as fuel is consumed.

a.       if(t>0 && t<burnTime) m=mass - mass*fuelPct*(t/burnTime);

else m=mass * (1-fuelPct);

12.   Calculate d for drag (use constant .6)

13.   Calculate Acceleration

a.       a=(force-m*g -d)/m;

14.   Calculate height (dt represent delta time or 1 second)

a.       h     = h   + dt * v;        /

15.   Calculate new velocity

a.       v     = v   + dt * a;

16.   Print time, height, velocity, acceleration, and mass

17.   Break out of loop if height is negative

a.       if (h<0) break;

18.   Compute max height and velocity

19.   Compute avg velocity

20.   Save time of max height

21.   end of loop

22.   Display the summary report heading

23.   Display Apogee

24.   Display time of Apogee.

25.   Display max velocity

26.   Display average velocity


 


Related Questions in computer science category